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The continuity of the metric projection onto an approximatively compact set in a
uniformly convex and uniformly smooth Banach space is investigated. An explicit
modulus of continuity for the metric projection which depends on the directional
radius of curvature at a certain point of the set is obtained. The results generalize
and improve those obtained by B. O. Bjornestal.

1. INTRODUCTION

Let M be a nonempty set in a Banach space B. The metric projection P of
B into M is defined by P(x)={YlyEM, infmEltllx-mll=llx-Yllf,
x E B. In our discussion we will assume that M proximinal which me~ans that
P(x) *' 0 for every x in B.

It is well known that when M is a closed convex set in a uniformly convex
Banach space (e.g., a Hilbert space), the metric projection P is a singleton
and continuous. See 151 for a proof.

If M is a closed convex set in a Hilbert space, then (as is well known) P
satisfies IIP(y)-P(x)II~lly-xll for all y and x. For such a set in a
uniformly convex and uniformly smooth Banach space Bjornestill 131 proved
that II P( y) - P(x)/I ~ 2b - 1(2,5(6 II y - x II», where b - 1 is the inverse function
of the modulus of uniform convexity, ,5 is the modulus of uniform
smoothness and where it is assumed that Ilx - P(x)II = 1.

P may be a singleton and continuous even if the set M is not convex; as a
matter of fact, Wolfe in [7 J has proved that if M is a C 2 approximately
compact manifold in a Hilbert space, then P is a singleton and Frechet
differentiable in an open dense set. Furthermore, in this case the present
author has shown in [11 that whenever. throughout an open set S, P(x) is a
singleton, continuous and *,x, it is Frechet differentiable in S and its Frechet
derivative P' (x) satisfies there II P' (x )1/ ~ pi(p - r), where r = II x -- P(x )11 and
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P is the reciprocal of the maximum principal curvature of M at P(x) in the
direction of x - P(x). (If this principal curvature = 0 we take p = 00 in
which case IIP'(x)11 = 1.)

Even when M is not C 2 it is possible to define the notion of directional
radius of curvature, see 12, 41 for the definition, and using it we have proved
the following theorems for a Hilbert space, see 12].

THEOREM 1. Let M be an approximatively compact set and suppose P(x)
is a singleton. Let p be the directional radius of curvature ofMat P(x) in the
direction x-P(x). We assume x*-P(x) and r=llx-P(x)ll*-p. Then if
mrEP(y), we have limrjllm\,-P(x)II/lly-xll)~2P/(p-r). where
r ~ Ilx - P(x)ll· '.

~HEOREM 2. Let M be a closed convex set and assume x*- P(x). Then
lim\~'(11 P(y) - P(x)II/11 y - xii) ~ 2p/(2p - r), where p and r are defined as
in Theorem 1.

This improves the classical estimate IIP(y)-P(x)II~lly-xll, see 141.
because, as it turns out, p ~ 0 when M is convex.

The purpose of this paper is to generalize Theorems 1 and 2 in the context
of uniformly smooth and uniformly convex Banach spaces.

2. DEFINITIONS

A set M in a Banach space B is called approximatively compact if for
each x in B and each sequence lmll}cM such that Ilx-mllll-->
infmEM II x - m II, there exists a subsequence converging to a point in M.

Radius of Curvature. Let M be a set in a Banach space B. Let x E B
(x EM) be a point such that P(x) is a singleton. Consider the unit vector
v = (x - P(x»/(llx - P(x)ll) and points fJ in M close to m = P(x). We assume
m is a limit point of M. Next we consider the following equation in t:

It I= II(m + tv) - mil = II(m + tv) - fJll with f.1 *- m. (2.1 )

If Eq. (2.1) does not hold for any finite t we take (= 00, otherwise the
solution t is unique.

We now define the directional radius of curvature of M at m in the
direction v, p(m, v) as

(
I I' I

p(m,v)= !i~ t:ltl=ll(m+tv)-fJlld
IJ,EM
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If (2.1) does not hold for a finite t for all f..I sufficiently close to m, we set
p(m. v) = 00. For more properties and examples of the radius of curvature
see [2,51.

3. THE MODULUS OF CONTINUITY

OF THE METRIC PROJECTION IN UNIFORMLY CONVEX

AND UNIFORMLY SMOOTH BANACH SPACES

A Banach space B is said to be uniformly convex if its modulus of
uniform convexity 15 defined by

6(£) = inf{ I -! Ilx + yllll[xil ,;;;; 1, II yll,;;;; 1.llx - yll ~ £ f

is a strictly increasing function on 10, 2).
A Banach space is uniformly smooth if its modulus of uniform

smoothness p defined by

p(r)= sup 1(llx+YII+llx-yll-2)/2]
lixll~ I

IYII T

satisfies p(r) = o(r) as r ---; 0.
For a closed convex set M in a Banach space with the above properties, B.

O. Bjornestill proved I[P(y) - P(x)II';;;; 2t5-'(2p(6 [I y - xii)) provided that
II x - P(x )[1 = I and y is sufficiently close to x. (Here and below 15 - I is the
inverse function to 15.) Our goal is to introduce a new technique which will
allow us to estimate the modulus of continuity of the metric projection in the
case that M is an approximatively compact set. This technique uses the
directional radius of curvature at points of the set M and gives better
estimates than those of Bjornestill.

We shall make use of Lemma 3.1 which can be found in 16, p. 3881.

LEMMA 3.1. Let M be an approximatively compact set in a Banach
space B. Suppose x in B has m as a unique best approximation from M and
let {xk } be any sequence converging to x and {md any corresponding
sequence of closest points in M. Then m k ---; m.

We will also use Lemma 3.2 which gives an estimate on the Lipschitz
continuity of the metric projection onto a sphere of radius R.

LEMMA 3.2. Let P be the metric projection onto the sphere centered at °
and of radius R in a uniformly convex Banach space. Then if x"* °and
y"* 0, we have

2R
IIP(y) - P(x)II';;;; R II y - xii·
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Proof It is obvious that for each x * 0, P(X) = (R/llxll) x. Then

IIP(y)-P(x)ll= IIII~II y- ~ xll= IIXI~IYIIIIIIXIIY-IIYllxll

< Ilxl~1 Yllllllx li y -II yll y + II yll y -11 yll x II

< Ilxll~11 yll II (II xii-II yllLv II + Ilxl~1 yllll.vll ·lI.v - xii

R Ily-xll R Ily-xil 2R Ily-xll< + = .Ilxll Ilxll Ilxll

Theorem 3.1 gives a sharp estimate of the modulus of continuity of the
metric projection for the case that M is an approximatively compact set in a
uniformly convex and uniformly smooth Banach space. Theorem 3.1
improves and generalizes results by Bjornestal in 131 who obtained estimates
of the modulus of continuity for the case that the set M is closed and convex.
Our method of proof is different from his and is based on the concept of
directional radius of curvature and thus may be called the "curvature
method."

THEOREM 3.1. Let M be an approximatively compact set in a uniformly
convex and uniformly smooth Banach space B. Let x rl. M be a point in B
which has a unique best approximation m in M. Assume that p(m, v) * r =
Ilx-mll. Choose a>O so that a=(p(m,v)-a)/llx-mllrl.IO,lj
(a <p(m,v) if p(m,v» 0). Let y in B satisfy Ily-xll<llx-mll. Set
I = II ax - m 11/lI.v - axil (y - ax cannot vanish). Then ify is sufficiently close
to x. we have

for 1<2,

I _I (21IZ-YII_( 2a Ily-x ll ))
Ilm,-mll<21Iy-mllt5 Ily-mil p a-I Ilz-yll .

2a
+-~lly-xll·

a-I

for I> 2, where m, is any point of P(y), and z is the intersection of the line
through m + (p(m, v) - a)v and y with the sphere of radius Ip(m, v) - a I
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centered at m + (p(m, v) - a)v. Here r5 and p are, respectively, the moduli oj
uniform convexity and uniform smoothness oj B.

Proof By performing an appropriate translation we may assume that
m = O. Also we will treat the case when p(m, v) > O. (The proof when
p(m, v) ~ 0 is similar.) Now if y is sufficiently close to x, we use Lemma 3.1
and 12, 3.11 to obtain that

p(m, v) - a = 11(P(m, v) - a)vll ~ 11(P(m, v) - a)v - m,ll,

where m" is any element of P(y). Also observe that the unequality
II y - m,,11 ~ II yll holds trivially because we assumed that 0 was in M.

Let w be the intersection of the ray from (p(m, v) - a)v through y with the
sphere of radius II yll centered at y. We consider the two cases I ~ 2 and
I > 2. See Fig. 1.

First let us assume that 1~ 2. Set z = ax + I(y - ax); then
Ilz-2y+m"II=II(I-I)(y-ax)+m,,-YII=II(I-I)(ax-y)+y-m,ll>
(1- I) II ax - y II + II y - zII because m, is outside the closed ball of radius
(1- I) II ax - yll + II y - zII centered at (/- I )(ax - y) + y. It then easily
follows that liz - 2y + m,,11 > (l - I) II ax - yll + Ily - zll =
((llaxll/lly-axll)-I) Ilax-yll + Ily-zll = Ilaxll-llax-yll + Ily-zll
= 211y- zll·

FIGURE 1
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Now by the definition of modulus of uniform convexity we have

I . (' ('llm,--zll))21Iz-y+m,,-YII,,::;:lly-m,11 1-61Iy~m,,!1 •

from which we obtain

11.1' - z II ,,::;: ~ II z - y + m, - .I'll ,,::;: :1 y - m, II

X(1 - 6 (II ~y - z II) ) ,,::;: II y II (I - 6 ( III~\ ~i z II .) ) ,
1I.I-m"I!, , il.lll·

The last inequality can be rewritten as

6 (1Im,-zll)< Ilyil-lly zll
Ilyli " Ilyl!

from which we get

Ilz- wll
11.l"i

, ' /' I ('llz-wll)
ilm" - zll ~ II yll 0 11.1'11 .. (I)

In the case where I > 2 we take a convex combination of z .I' and m \' l'

and obtain the following inequality:

11+ (z - y) + (1- +)(m, .1') I:

= II (+- I ) ax + ( I -- +) m, II

=(I-~)i.lax-m.II.::?(l-~) ax, Ii' ,Y, I

( II F - ax) 'II I' II '= 1- '1laxll !Iax = I!ax I- .1'- CO:!I

=lly-zll· (2)

In the derivation of this inequality we used the fact that P(ax) = O.
Observe also that since II y - z II ,,::;: I! y - m, II. we obtain

11+ (z - y) + (I - --}) (m, -- .1') II ,,::;: II m, - .I'll ,,::;: 11.1'11·
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Then we apply the modulus of uniform convexity to the vectors m, - y and
(211)(z - y) + (1 - (211))(m, - y) to obtain

II
I (1 ) II (' (' 2 II m, - z II ) )T (z ~ y) + 1 - T (m,. - y) :( II m"- yll 1 - 0 Til m\ - yll .

The last inequality and (2) imply

II y - z II :( II y II (I - 0(+II ~I".~I z II ) ) ,

I.e.,

o ('~ II m, - z II) :( 1 _ II y - z II = II y II -II y - z II = II z - w II
1 II yll II yll II yll II yll

from which we obtain

1 _1 (liz - IV 1\ )
Ilm,-zll :(211y110 Ilyli'

Now we use the modulus of uniform smoothness to obtain

Ilz-y+zll+llz-y- zll-21I z-yll _(' Ilzll )
:(p I .211z - .vII Iz - yll

Observe that the closed ball of radius II y - z II centered at y is contained in
the closed ball of radius II ax II centered at ax. Note also that 0 and z lie in
the last mentioned ball so that 2z must lie outside it. Hence.
II y - z II < 112z - y II, so that

liz - wll = II .vII-liz - yll :(jj ( Ilzll).
211z - yll 211z - .vII liz - yll

By Lemma 3.2

211axll 2a
Ilzll:( II IllI.v-x ll =--1 Ily-xll·ax-x a-

We combine inequalities (1), (3), (4) to obtain

II _ II~II 110- 1 (21Iz-yll -(~ IIY-X ll ))
mv z '" y Ilyll p a-I Ilz-yll

(3 )

(4 )

when 1:( 2,
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II m v - z II :s;;~ II y 1115 - 1(2 11 z - y II /i (.~ Lv -~ x Ii ) .)
. 2 Lvii a--I z-yll

Finally, since II m, II :s;; II m, - z Ii + II z Ii, we have

for I> 2.

Ilmvll:s;;IIYII151 (21Iz-yllp (~Lv-xll)) +~IIY--x
. Lvii a-I Ilz-yll a-I

for I:S;; 2.

Ilmvll:S;;-2/1Iylll5 1(21IZ--Yllp(·.~IIY-XII))+~iIV xii
Ilyll a-Illz-yll a-I"

for 2 < I.

COROLLARY 3.1. If M is a closed subspace in a uniformly conuex and
uniformly smooth Banach space, then

_ (. 211v-zll _(21Iv-xll))II PCv) - P(x)11 :s;; II y -- P(x)1115 1 II y P(x)11 P .;, _ z + 211 y

where z is the metric projection 01 y onto the linear subspace

xii,

\ d
X = IV: -d Ilx - P(x) +Ivll !

t I(

Proof Replace the sphere of radius II axil centered at ax by X and
proceed as in the proof of Theorem 3.1.

Let us compare Corollary 3.1 with Bji:irnestal's result mentioned in our
Introduction. Take y close to x, II x II = II y II = II y - z II = I, P(x) = O. We
obtain II P( y) - P(x)11 :s;; 15 1(2p(2 II y- x II)) + 2Lv -- x II which compares
favorably with Bjornestal's bound II P(y) - P(x )11 :s;; 215 1(2p( 6 II y - x II)),

Remark. Corollary 3.1 can be considered a limiting case of Theorem 3.1
as a --+ CX).

Now we would like to specialize our results to the U' spaces in order to

get specific estimates.

COROLLARY 3.2. In U'(P) with the same hypotheses as in Theorem 3.1,
and the assumption that p(m, v )/11 x - mil E II, 21, we have



lim
Y--+X

.v-tX
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limy-mil ~ 4r(2-
p

)/2 ( 2p(m,v) )1'/2

II Y - xllP /2 '" VP(p - I) p(m, v) - r

limy - mil ~ 2r(p-2) lp vp(p--=-i) ( 2p(m, v) ) 2/1'
II y ~ x11 2

/
p

'" p(m, v) - r
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for I < p < 2,

for 2 < P < 00.

convexity and uniform
14 j, we estimate

We then let a ---> 0 and

Proof Using the known moduli of uniform
smoothness in LP(P), 1 < P::;:;; 2, see

lim y~x II m,. - mil/II y - x 111'/2 using Theorem 3.1.
obtain the corollary.

We would like to point out that the estimates of this corollary are sharp in
some sense because there is a subspace of LP, I < P < 2,. and a point x such
that jim y.,(llp(y) - P(x)ll/il y - xII P12 ) = C > O. See /3/ for details.
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